Boundary integral equations and maximum modulus estimates for the Stokes system
نویسندگان
چکیده
منابع مشابه
An embedded boundary integral solver for the stokes equations
We present a new method for the solution of the Stokes equations. Our goal is to develop a robust and scalable methodology for two and three dimensional, moving-boundary, flow simulations. Our method is based on Anita Mayo’s method for the Poisson’s equation: “The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular Regions”, SIAM J. Num. Anal., 21 (1984), pp. 285– 299. We embed...
متن کاملAdaptive methods for boundary integral equations: Complexity and convergence estimates
This paper is concerned with developing numerical techniques for the adaptive application of global operators of potential type in wavelet coordinates. This is a core ingredient for a new type of adaptive solvers that has so far been explored primarily for PDEs. We shall show how to realize asymptotically optimal complexity in the present context of global operators. “Asymptotically optimal” me...
متن کاملCompression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates
Matrix compression techniques in the context of wavelet Galerkin schemes for boundary integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that is proven to stay proportional to the num...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولAnalyticity estimates for the Navier-Stokes equations
We study spatial analyticity properties of solutions of the Navier-Stokes equation and obtain new growth rate estimates for the analyticity radius. We also study stability properties of strong global solutions of the Navier-Stokes equation with data in H, r ≥ 1/2 and prove a stability result for the analyticity radius.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2007
ISSN: 1617-7061,1617-7061
DOI: 10.1002/pamm.200700862